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Intfroduction

BROAD GOAL: Model potential impacts of forest management strategies on
the ecohydrology of the Santa Fe Municipal Watershed under historical and
potential future climates

Background
O Why are ecologic-hydrologic interactions important?

O RHESSys
How well does the model capture these processes?

Scenarios
O Climate change
O Forest thinning & disturbance

O Combined effects



Background: Climate Change & Streamflow in the West
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Background: Climate Change & Streamflow in the West

Importance of Vegetation-Hydrology Interactions:

Most studies on climate change impacts on hydrology do not consider
vegetation dynamics (growth/dieback)

ET can account for 75-85% of precipitation in semi-arid forest systems

Vegetation dynamics may affect streamflow through:
O ChangesinET
O Shiftsin phenology

O Changesinvegetation structure and composition
that lead to changes in water use
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Background: Integrated Ecologic-Hydrologic Modeling

Unigue take...

RHESSys — Process-based, spatially-distributed, integrated ecologic-
hydrologic model that simulates carbon, nutrient, and water cycling
across a landscape

O Linked physically-based process models, so can frack all components in the
carbon and water cycle

O Spadtially distributed model, so can track components across the landscape

O Daily time-step, so appropriate for ecosystem processes and water supply
management

O Ideally suited for investigating complex interactions between processes which
are difficult to capture through measurement alone L4




Background: Integrated Ecologic-Hydrologic Modeling
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Model Process Capture: Hydrology

RHESSys model development and hydrologic calibration
O Build landscape (topography, soil, hydrology) and vegetation models

O Calibrate subsurface drainage parameters (saturated hydraulic conductivity,
decay of conductivity with depth, pore size index, air entry pressure) by
comparing modeled and observed daily streamflow

Model performance measures for DAILY streamflow predictions:
R2=0.75 Nash-Sutcliffe Efficiency = 0.68 Log Nash-Sutcliffe Efficiency = 0.71

Observed and Modeled Daily Streamflow
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Model Process Capture: Vegetation Dynamics

Three-Pronged Dynamic Vegetation Model Validation
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Model Process Capture: Vegetation Dynamics
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Model Process Capture:

NDVI
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Leaf C 0.57 0.27
12.4
Stem C 9.49 10.5
Root C 3.38 1.9 2.7
Coarse Woody 13 7
Debiris 5.24 )
Litter C 0.55 1.2 6.8
Soil C 6.60 53 12.6
Total C 25.84 20.47 41.5




Model Process Capture: Vegetation Dynamics

Improvement in Annual Streamflow Prediction

The dynamic vegetation model improved streamflow predictions during drought years,
shifting the mean annual streamflow percent error from 20% to 10%.
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Scenarios: Climate Change & Forest Management

Climate and Management/Disturbance Scenarios

Temperature Management
Baseline (historical) Baseline
+1°C Thinning in lower watershed only*
Yo Thinning of south ospec’ri only in upper
watershed
+4C Thinning over entire watershed
Precipitation Disturbance
Baseline (historical) No fire
+10% Burn over entire watershed
t25% Partial burn in lower watershed*
Downscaled GCMs* Partial burn in upper watershed*

* scenarios in process



Scenarios: Climate Change
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Scenarios: Climate Change

Annual Minimum 7-Day Average Flow Distribution of Minimum Low Flow Weeks by Month
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Scenarios: Vegetation Management

Mean Daily Streamflow: Vegetation Controls
First Year After Event
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Conclusions

RHESSys captures daily, seasonal, and annual streamflow patterns as well
as interactions between hydrology and vegetation growth

The modeled watershed exhibits high sensitivity of snowmelt to warming

© 1° C warming requires a 25% increase in winter precipitation to
maintain snowpack

Low flows shift from late winter to pre-monsoon summer under 4° C
warming; peak flows show only minor temperature impacts.

In the year immediately after a watershed-wide thinning, annual
streamflow increases are on the order of 74%; by 5-10-yrs post-thinning
increases reduce to 7%



Next steps

Expand to full watershed.

Incorporate downscaled GCM projections for climate change
trajectories.

Generate additional thinning and disturbance scenarios and run over full
range of climate projections (i.e., variable start dates).

Develop vegetation change scenarios.

BLAME 1TON OTHER. PECPLE =
. ,,"”
t!vh =
Contact Info: =
adugger@bren.ucsb.edu :
ctague@bren.ucsb.edu ] )a S == :

© Origing! Astist
Repmdu:i:dnfrights obtamnable from
LR

wwwr CatoonStock com TONIN

http://fiesta.bren.ucsb.edu/~rhessys/ Q\ = /




