Fuels treatments and ecological values in piñon-juniper woodlands: Vegetation, birds, and modeled fire behavior

Jonathan Coop and Patrick Magee!
Western State Colorado University, Gunnison, CO
Southwest Fire Science Consortium Monthly Webinar 1 March 2017

How this webinar will work (hopefully):

- Introduction Coop
- Field sampling methods Magee
- Birds: analysis and findings Magee
- Vegetation and fuels: analysis and findings – Coop
- Fire behavior models Coop
- Conclusions/questions Coop & Magee

Fuels Treatments

Objectives

Restoration

Resilience

Resistance

Fuels Treatments Social-Ecological Tradeoffs

Piñon-Juniper Woodlands

Evans, R.A. - Management of Pinyon-Juniper Woodlands. USDA, Forest Service -- Intermountain Research Station, GRT INT-249, Public Domain, https://commons.wikimedia.org/w/index.php?curid=46708432

- Ca. 100 million acres in US (3rd largest veg type)
- Largest forest type in Colorado (21%)
- Diverse, complex, variable in composition, dynamics.
- Uncertainty about effects of human & natural drivers

Birds of the PJ Ecosystem

Avian/Tree Mutualisms

70+ species of breeding birds20% are PJ obligates75% are Neotropical migrants(Balda and Masters 1980)

State of the Birds (BBS)

Piñon Jay -4.26%

Plumbeous Vireo -2.67%

Black-throated

Gray Warbler -1.45%

Virginia's Warbler -1.26%

Juniper Titmouse -0.44%

Gray Flycatcher +2.73%

Colorado Wildlife Action Plan Species of Greatest Conservation Need

Juniper Titmouse, Piñon Jay, Virginia's Warbler, Gray Vireo

Mechanical Treatments: Fuels mitigation

- Redistribute fuels from canopy to surface, convert large- to small-diameter fuels.
- Effects on PJ-dependent species and potential fire behavior?

Study Objectives

- 1. Assess impacts of PJ fuels treatments on birds, woodland vegetation and fuels, and modeled fire behavior.
- 2. Could fuels treatments be optimized to maintain valued ecosystem components and still reduce fire hazard to socially desired levels?

BLM, Royal Gorge Field Office

- 29 pairs treated/untreated sites (24 hydro-ax, 5 hand-thin).
- x 4 points each site, n = 232
- chronosequence of treatments 1-11 years old
- climate/ecological gradient from cold, dry woodlands to warmer, wetter savannas
- no pretreatment data

Field Methods

Birds

- 4 bird points per sample unit (n=232)
- 3 point count periods
- 2014 and 2015

Fuels

- 3 planar intercept fuels transects each point
- 30 samples of fuelbed depth, recorded by type

Vegetation

- 3 point-lineintercept transects each point
- tree ht, BA, canopy and ground cover in 5.64-m radius plot

Birds -- Analysis

Multi-scale Occupancy in Progam Mark

GOAL: produce unbiased estimates of the proportion of sites occupied by a bird species

Landscape Scale (Psi)
Local Scale (Theta)

Three Step Model Selection Process

- 1. Detection Probabilities (p)
- 2. Treatment effects models incorporating best detection probability model
- 3. Covariate Analyses

Covariate Analysis

7 Landscape Variables

Year since treatment MAT, MAP, HLI, Elevation Forest Cover (10 ha and 100 ha)

11 Local Scale Variables

Bare ground, herb, shrub
Vegetation height standard deviation
Tree height
Live tree density
Juniper density, piñon density
Live basal area
Juniper basal area, piñon basal area

Birds -- Findings

Piñon-Juniper Bird Community						
Spotted Towhee	2,595					
Black-throated Gray Warbler	1,022					
Western Scrub Jay	834					
Chipping Sparrow	806					
Broad-tailed Hummingbird	731					
Black-headed Grosbeak	703					
Plumbeous Vireo	682					
Gray Flycatcher	646					
Blue-gray Gnatcatcher	545					
Ash-throated Flycatcher	491					
Mountain Chickadee	446					
Mourning Dove	437					
Western Tanager	435					
Virginia's Warbler	431					
Juniper Titmouse	423					

Avian Occupancy

Habitat/ Species Guild		andscape Occ	upancy)	Theta (Local Occupancy)			
	Control	Hydroaxe	Handthin	Control	Hydroaxe	Handthin	
GRFL	0.956	0.886	0.894	0.903	0.867	0.864	
BTYW	0.998	0.894	0.946	0.934	0.929	0.930	
VIWA	0.862	0.756	0.788	0.861	0.827	0.839	
JUTI	0.806	0.795	0.789	0.924	0.910	0.893	
PIJA	0.576	0.672	0.702	0.842	0.533	0.420	
•							
MOBL	0.654	0.909	0.545	0.771	0.771	0.786	
ВНСО	0.648	0.640	0.647	0.885	0.954	0.946	
LASP	0.843	0.825	0.843	0.020	0.622	0.112	
	GRFL BTYW VIWA JUTI PIJA MOBL BHCO	Control GRFL 0.956 BTYW 0.998 VIWA 0.862 JUTI 0.806 PIJA 0.576 MOBL 0.654 BHCO 0.648	Control Hydroaxe GRFL 0.956 0.886 BTYW 0.998 0.894 VIWA 0.862 0.756 JUTI 0.806 0.795 PIJA 0.576 0.672 MOBL 0.654 0.909 BHCO 0.648 0.640	Control Hydroaxe Handthin GRFL 0.956 0.886 0.894 BTYW 0.998 0.894 0.946 VIWA 0.862 0.756 0.788 JUTI 0.806 0.795 0.789 PIJA 0.576 0.672 0.702 MOBL 0.654 0.909 0.545 BHCO 0.648 0.640 0.647	Control Hydroaxe Handthin Control GRFL 0.956 0.886 0.894 0.903 BTYW 0.998 0.894 0.946 0.934 VIWA 0.862 0.756 0.788 0.861 JUTI 0.806 0.795 0.789 0.924 PIJA 0.576 0.672 0.702 0.842 MOBL 0.654 0.909 0.545 0.771 BHCO 0.648 0.640 0.647 0.885	Control Hydroaxe Handthin Control Hydroaxe GRFL 0.956 0.886 0.894 0.903 0.867 BTYW 0.998 0.894 0.946 0.934 0.929 VIWA 0.862 0.756 0.788 0.861 0.827 JUTI 0.806 0.795 0.789 0.924 0.910 PIJA 0.576 0.672 0.702 0.842 0.533 MOBL 0.654 0.909 0.545 0.771 0.771 BHCO 0.648 0.640 0.647 0.885 0.954	

Landscape Occupancy (Ψ) significant treatment effects

Local Occupancy (θ) significant treatment effects

	Species	Local Scale Covariates										
<u>ə</u>		Bare	Herb	Shrub	Tree	StD	Live	Juniper	Piñon	Live	Juniper	Piñon
Niche		Ground	Cover	Cover	Height	Height	Count	Count	Count	Basal	Basal	Basal
										Area	Area	Area
	BTYW	0.04	0.08	0.04	0.04	0.05	0.06	0.27	0.05	0.06	0.10	0.18
l s	VIWA Ψ	0.08	0.05	0.58	0.06	0.04	0.08	0.02	0.06	0.03	0.02	0.06
-ر Ser jali	JUTI Ψ	0.05	0.69	0.05	0.02	0.03	0.04	0.08	0.04	0.10	0.63	0.04
Piñon- Juniper Specialist	PIJA θ (Ψ)	0.01	0.02	0.98	0.01	0.58	0.12	0.13	0.98	0.02	0.01	0.02
Pi Ju Sp	GRFL Ψ	0.01	0.16	0.01	0.01	0.01	0.02	0.01	0.01	0.70	0.25	0.02
	WBNU Ψ	0.05	0.53	0.04	0.17	0.03	0.11	0.10	0.07	0.15	0.09	0.10
er e	мосн Ф	0.04	0.08	0.05	0.12	0.08	0.05	0.04	0.06	0.07	0.08	0.37
Mature	PLVI Ψ	0.38	0.06	0.07	0.05	0.75	0.03	0.29	0.05	0.67	0.14	0.20
≥ິວ	YRWA Ψ	0.08	0.13	0.05	0.05	0.06	0.24	0.57	0.39	0.06	0.06	0.11
	CLNU Ψ	0.12	0.12	0.03	0.21	0.13	0.02	0.02	0.02	0.03	0.04	0.05
	WETA Ψ	0.09	0.31	0.11	0.18	0.23	0.17	0.10	0.10	0.24	0.11	0.13
ر fer	CHSP	0.16	0.12	0.08	0.09	0.11	0.15	0.15	0.23	0.20	0.33	0.17
Open Conifer	ΑΜΡΟ θ	0.00	0.99	0.00	0.01	0.98	0.01	0.01	0.99	0.00	0.00	0.00
ōŏ	ATFL θ	0.06	0.07	0.05	0.05	0.05	0.05	0.07	0.05	0.05	0.12	0.05
	BGGN θ	0.02	0.02	1.00	0.12	0.10	0.02	0.02	0.03	0.02	0.02	0.02
	BUSH θ	0.22	0.02	0.26	0.01	0.16	0.09	0.03	0.09	0.42	0.40	0.05
nd, nd	SPTO	0.00	1.00	0.00	0.67	0.33	0.00	0.33	0.00	0.17	0.17	0.33
Open Woodland/ Shrubland	CONI	0.04	0.08	0.03	0.06	0.05	0.02	0.05	0.04	0.06	0.04	0.42
Open Wood Shrub	WEBL θ	0.10	0.54	0.20	0.12	0.07	0.06	0.15	0.09	0.07	0.44	0.07
0 > 5	WEWP θ	0.08	0.15	0.04	0.29	0.05	0.10	0.04	0.38	0.05	0.04	0.04
ts .	MOBL Ψ	0.03	0.03	0.09	0.03	0.27	0.03	0.05	0.09	0.07	0.08	0.14
Forest	ВНСО	0.05	0.04	0.94	0.17	0.26	0.04	0.33	0.05	0.06	0.56	0.06
	LASP θ	0.09	0.10	0.01	0.04	0.14	0.04	0.01	0.17	0.70	0.23	0.05
<u>.</u>	BTLH θ	0.08	0.48	0.19	0.07	0.06	0.07	0.54	0.08	0.06	0.54	0.06
Gener -alist	BHGR θ	0.01	0.01	0.01	0.06	0.03	0.11	0.88	0.16	0.77	0.06	0.79
و _و	NOFL Ψ	0.06	0.31	0.07	0.17	0.33	0.04	0.10	0.25	0.07	0.26	0.06

	Species	Landscape Scale Covariates						
Habitat/Guild		Year Since Treatment	Mean Annual Temperature	Mean Annual Precipitation	Elevation	Heat Load Index	Forest Cover 10 ha	Forest Cover 100 ha
	BTYW	0.27	0.12	0.13	0.10	0.14	0.86	0.29
) er	VIWA Ψ	0.03	0.05	0.05	0.08	0.83	0.29	0.52
Piñon-Juniper Specialist	JUTI Ψ	0.02	0.55	0.02	0.46	0.04	0.04	0.03
ion-J	ΡΙJΑ θ (Ψ)	0.01	0.01	0.03	0.01	0.02	0.01	0.01
Piñ Spe	GRFL Ψ	0.14	0.32	0.81	0.47	0.01	0.01	0.01
	WBNU Ψ	0.16	0.18	0.11	0.85	0.14	0.02	0.03
	мосн Ф	0.17	0.33	0.05	0.96	0.10	0.15	0.06
Mature Conifer	PLVI Ψ	0.01	0.02	0.03	0.04	0.12	0.02	0.02
	YRWA Ψ	0.05	0.15	0.36	0.16	0.06	0.07	0.18
	CLNU Ψ	0.14	0.27	0.16	0.75	0.60	0.16	0.06
	WETA Ψ	0.20	0.07	0.07	0.07	0.08	0.37	0.09
	CHSP	0.43	0.12	0.08	0.11	0.07	0.07	0.07
Open Conifer	ΑΜΡΟ θ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
do	ATFL θ	0.23	0.54	0.04	0.48	0.08	0.14	0.63
	BGGN θ	0.02	0.07	0.01	0.97	0.03	0.03	0.03
75	BUSH θ	0.16	0.14	0.37	0.10	0.36	0.07	0.05
Open woodland/ shrubland	SPTO	0.00	0.00	0.00	0.00	0.00	0.00	0.00
pur	CONI	0.42	0.03	0.06	0.04	0.45	0.91	0.12
en v ubla	WEBL θ	0.08	0.19	0.11	0.30	0.07	0.09	0.07
Op shr	WEWP θ	0.42	0.04	0.04	0.04	0.09	0.47	0.51
	МОВL Ψ	0.13	0.44	0.06	0.53	0.09	0.31	0.45
9	ВНСО	0.03	0.03	0.03	0.03	0.17	0.04	0.04
Edge	LASP θ	0.37	0.01	0.00	0.01	0.01	0.93	0.08
	BTLH θ	0.06	0.09	0.11	0.09	0.06	0.09	0.06
Gener- alist	BHGR θ	0.01	0.01	0.01	0.01	0.05	0.01	0.02
alis	NOFL Ψ	0.11	0.31	0.05	0.48	0.06	0.04	0.11

Vegetation

sustained decreases in piñon density, BA

juniper density

sustained decreases in juniper density, BA

tree seedlings

sustained decreases in woodland tree seedling density

Vegetation

initial decrease in shrubs, but increases to > pre-treatment levels within a decade

sustained increases in grasses and forbs

Non-native Species

- Significant, persistent increases in occurrence, richness, and cover by exotic plant species in treatments
- Richness of non-natives > doubled in treatments
- 20 spp. of non-natives encountered in treatments, including cheatgrass (*Bromus tectorum*), Canada thistle (*Cirsium arvense*), tumbleweed (*Salsola kali*), Jim Hill mustard (*Sisymbrium altissimum*), mullein (*Verbascum thapsus*)

Non-native Species

Relative effects of disturbance, changes in light environment, changes in surface cover?

variable	treatment	canopy	on woodchip pile	next to woodchip pile
cheatgrass		_ *	_ **	+ **
other invasives	+ *			
all invasives	+ *		_ **	+ *

control vs. mastication

Dead & Down Woody Fuels

initially no change in litter and duff, but then decreases over time.

mastication increases 1 + 10

hour fuels, gradual declines

toward pre-treatment levels

(8-12 years)

100 + 1000 hour

increases in 100 and 1000 hour fuels in treatments

Potential Fire Behavior

- Model fire behavior across fuels gradients under different moisture scenarios – how effective are they?
- Model fire behavior with two simulated changes to treatments: 1)
 pruning -- elevated canopy base height and 2) surface fuel
 reduction -- reduced surface fuel loads (e.g., Rx fire, pile-and-burn).

10 fuel parameters

Fuel parameter	Control	Treatment	Significance
1-hour surface fuels (Mg ha ⁻¹)	5.2 ± 2.9	4.5 ± 2.8	*
10-hr surface fuels (Mg ha ⁻¹)	2.7 ± 2.5	3.8 ± 3.6	**
100-hour surface fuels (Mg ha ⁻¹)	2.0 ± 2.7	2.9 ± 3.0	*
Live herbaceous surface fuels (Mg ha ⁻¹)	0.12 ± 0.17	0.32 ± 0.43	***
Live woody surface fuels (Mg ha ⁻¹)	0.67 ± 1.07	0.49 ± 0.90	NS
Fuelbed depth (m)	0.14 ± 0.07	0.11 ± 0.06	**
Canopy cover (%)	28.7 ± 24.2	6.2 ± 14.0	***
Canopy height (m)	5.9 ± 3.2	2.4 ± 2.0	***
Max. canopy bulk density (kg m ⁻³)	0.34 ± 0.21	0.09 ± 0.15	***
Canopy base height (m)	0.54 ± 0.41	0.38 ± 0.55	*

Principle Component Analysis of Fuel Parameters

- Controls vs. treatments segregate along PCA 1 & 2
- PCA 1: corresponds with decreasing canopy bulk density, increasing grass.
- PCA 2 increases with increasing live & dead woody surface fuel loads.

PCA₁ 0.27

0.18

variance explained

Lower Sand2 C4 (-1, -0.8)

Dawson C1 (-1.8, 2.7)

Upper Kerr HA3 (3.1, 2.5)

8 Mile Mountain HA2(2.5, -0.4)

Fire Behavior Fuel Moisture Scenarios (from nearby RAWS stations, 2011-2015)

FireFamilyPlus 4.1	Percentile Conditions				
PYTTERA LIVES	80th	90th	97th		
1-Hour Fuel Moisture	3.4	2.9	2.5		
10-Hour Fuel Moisture	4.4	3.9	3.4		
100-Hour Fuel Moisture	8.8	7.9	7.0		
Live Herbaceous Fuel Moisture	29.2	28.2	27.3		
Live Woody Fuel Moisture	73.1	69.3	64.8		
20' Wind Speed (km/h)	12.2	13.2	15.3		
1000-Hour Fuel Moisture	11.0	10.7	10.3		

Calculated Spread Comp.	11.0	13.0	16.3
Calculated ERC	63.5	66.5	69.5

Expected Fire Behavior

Four Fire Types

- Surface: fire consumes grass, down wood, but not trees
- 2. Torching: surface fire that transitions into trees, but does not spread tree-to-tree
- 3. Crowning: fire transitions into canopy and spreads tree-to-tree
- 4. CondCrown: fire cannot transition into canopy, but if it did, would spread tree-to-tree

Expected Fire Behavior

Expected Fire Behavior

At 97th percentile conditions, reduction between 15-35% canopy cover sufficient to reduce crown fire risk.

Untreated stands showed higher risk of crown fire, but

conditional crown fire in much of these stands suggest crown fire is contingent on transition to crown fire elsewhere.

Lots of torching.

What about treatment modifications that might decrease risk of transition from surface to crown fire?

mastication

hand-thin

control

- Raising canopy base height (pruning)
- Reducing surface fuel loads (Rx fire or pile burns)
- Can't do this with a hydro-ax.

Pruning crown bases to 1.5-m height

control
 hand-thin
 mastication

 Pruning sufficient to reduce torching in most cases, especially under moderate 80th percentile conditions.

Pruning + surface fuel reduction (e.g., Rx fire).

Pruning + Rx fire highly effective under both 80th and 97th percentile conditions.

Conclusions/Management Implications

- PJ fuel treatments can reduce active crown fire hazard, but may impart undesirable effects on native species and ecological communities.
- 13 of 26 bird species respond negatively to treatments, including high conservation priority PJ and conifer forest obligate species.
- Non-native species increases in treatments suggest need for proactive and reactive strategies.
- Across a wide range of sites and moisture scenarios, treatments may not be needed (especially given likely future drought-caused dieback). Focus treatments on WUI.
- For more ecologically friendly (and fire resistant) stands:
 - 1. Retain more trees (canopy cover ca. 15-50% probably sufficient, depending on objectives)
 - 2. Raise canopy base height
 - 3. Reduce surface fuels in treatments

BLM – Royal Gorge Field Office

Matt Rustand, Glenda Torres

Joint Fire Science Program

Western State Colorado University

Thornton Research Program

Tom Grant

Jake Ivan (Colorado Parks and Wildlife) – occupancy analyses

Paige Colburn, Kyle Gordon, Jake Powell, Erin Twaddell, Marcel Such, Jessie Dodge, Connor Jandreau, Ryan Walker, Liz Moore, Caitlin Bernier, Shannon Sprott

Southern Rockies Fire Science Network (Gloria Edwards)
Arkansas Valley Audubon Society + GARNA Bird Club
Jeremy Cole, Curt Sorenson, and Aaron Tezak

Thoughts/questions?

jcoop@western.edu pmagee@western.edu